Source Of Summary:

Handout 6 - unsupervised learning.pdf


1. Clustering Algorithms 🧩

Screenshot 2025-05-07 042054.png


2. Partitional Clustering: k-means 🔍

2.1 Algorithm Steps

  1. Decide on k: Choose the number of clusters. 🎯
  2. Initialize centers: Randomly (if necessary) pick k cluster centers. 🎲
  3. Assign memberships: For each of the N objects, assign to nearest center. 📏
  4. Re-estimate centers: Compute new centroids from current memberships. ↺
  5. Convergence Check: If no object changed cluster in last iteration, stop; otherwise, go to 3. 🔁

Screenshot 2025-05-07 042103.png

Screenshot 2025-05-07 042110.png

Screenshot 2025-05-07 042116.png

Screenshot 2025-05-07 042147.png

Screenshot 2025-05-07 042154.png

2.2 Objective Function 🎯